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1 Introduction

We have studied several approaches to statistical inference so far, each suited to a
particular set of assumptions on the problem model. Let us briefly understand the
common abstract setting of all these frameworks. There is always an underlying
hidden variable x 2 X (which could be deterministic or random) that defines an ob-
servation model (or likelihood) for a random variable y 2 Y. We typically have access
to this likelihood model (

�
py |x(·|x) : x 2 X

 
or {py (·; x) : x 2 X}). Upon observing a

realization y = y generated by this model, our goal is to infer the hidden variable x.
In the early 1900’s, the radar community was interested in models where |X| was

finite (and small), and often |X| = 2. For instance, radar engineers would observe
some measurement and have to detect if there was a signal in the measurement,
or if the measurement was just random noise. This problem could be set up as a
binary hypothesis testing problem where X = {H0 = no signal, H1 = signal} (and
|X| = 2). Today, such problems are classified under the category of detection theory.
In contrast, the branch of statistics that deals with inference questions where X is a
discrete or “continuous” set with |X| = +1 (or has very large cardinality) is known as
estimation theory. In the radar story, after detecting an analog signal, engineers would
have to approximate its value from noisy measurements, which would correspond to
a parameter estimation problem.

In the statistics community, there was another divide among inference problems.
Bayesian statisticians believed that the underlying parameter x was random and had
a prior distribution px which represented their belief about x . So, the “right” way to
proceed after observing y = y was to compute the posterior distribution px |y (·|y) in
order to update their belief (or use the joint distribution px ,y to infer x). In contrast,
non-Bayesian (or frequentist) statisticians did not impose such a prior over x and
assumed it was a deterministic parameter. The matrix below classifies the various
approaches we have developed in lectures according to these categories.

Bayesian Non-Bayesian

Detection Bayesian Hypothesis Testing Neyman-Pearson, Minimax
Estimation BLS, LLS MVU, E�cient

This recitation is concerned with Bayesian estimation theory.

Note: Sections 2.1 and 2.4 are edited, revised, and extended versions of material from previous
TAs of the course.
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2 Bayesian Parameter Estimation

2.1 Problem Setup and Basic Results

As discussed above, in the Bayesian framework, we assume that a prior distribution
px(·), and a likelihood model py |x(·|·) are available to us. The goal is to find a good
estimator x̂(y) that provides an estimate of x given any observation y = y. Although
we work with scalar random variables x and y here, the analysis remains unchanged
for random vectors y, and can be easily generalized for random vectors x (as shown
in the lecture notes).

In order to find a good estimator x̂(y), we minimize the expected cost:

x̂(·) = argmin
f(·)

Epx,y [C(x , f(y))]

and di↵erent choices of the cost function C(·, ·) lead to di↵erent optimal estimators.
In the lecture notes, we considered the following cost functions:

1. (Minimum Absolute Error) C(a, â) = |a� â|
The optimal estimator x̂MAE(y) is the median of the posterior distribution
px |y (·|y).

2. (Minimum Uniform Cost) C(a, â) =

⇢
0 , if |a� â|  ✏

1 , otherwise
As ✏ ! 0, the optimal estimator x̂MAP (y) is the mode of the posterior distri-
bution px |y (·|y).

3. (Minimum Mean-Square Error) C(a, â) = (a� â)2

The optimal estimator x̂BLS(y) is themean of the posterior distribution px |y (·|y).

The derivations of these results can be found in the lecture notes. Moreover, we note
that in order to measure the performance of estimators under the mean-square error
criterion, the following quantities were introduced in the lecture notes:

e(x , y) , x̂(y)� x (error)

b , Epx,y [x̂(y)� x ] = Epx,y [e(x , y)] (bias)

�e , Epx,y

⇥
(e(x , y)� b)2

⇤
(error variance)

MSE , Epx,y

⇥
e(x , y)2

⇤
= �e + b

2 (mean-square error)

2.2 Hilbert Spaces and the Geometry of MMSE Estimation

The most popular cost criterion in Bayesian estimation is the minimum mean-square

error (MMSE) criterion. When MMSE optimization is performed without any con-
straints, it outputs the Bayes’ least-squares (BLS) estimator. On the other hand,
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when it is performed over linear estimators, it outputs the linear least-squares (LLS)

estimator. We now develop a unified framework for constrained MMSE estimation
that characterizes both BLS and LLS estimators in a single shot.

To this end, let L2(X⇥Y, px ,y ) , {f : X⇥ Y ! R |E [f(x , y)2] < +1} denote the
Hilbert space of real-valued functions f(x, y) that have finite second moment (over the
field R). The finite second moment constraint is an analytical condition that ensures
that the space is complete (you may ignore this for the purposes of this course if
you are unfamiliar with it). By Hilbert space, we mean that such functions form a
(complete) vector space and is endowed with an inner product. Informally, the vector
space structure refers to the fact that linear combinations of functions in the space
also belong to the space (this is easy to check, but checking that the finite second
moment constraint holds is harder), and the inner product permits us to measure
distances and angles between vectors (or functions) in the space. Note that the zero
vector in this Hilbert space is the everywhere zero function f0(x, y) = 0.

We endow L2(X⇥ Y, px ,y ) with the following inner product:

hf, gi , E [f(x , y)g(x , y)]

for any two functions f, g 2 L2(X ⇥ Y, px ,y ) (where the expectation is taken with
respect to the joint distribution px ,y ). It is straightforward to verify that this is
indeed an inner product by checking the inner product axioms:

1. (positive definiteness) hf, fi = E [f(x , y)2] � 0 with equality i↵ f = f0

2. (symmetry) hf, gi = E [f(x , y)g(x , y)] = E [g(x , y)f(x , y)] = hg, fi

3. (linearity) haf + bg, hi = E [(af(x , y) + bg(x , y))h(x , y)] = aE [f(x , y)h(x , y)]+
bE [g(x , y)h(x , y)] = a hf, hi+ b hg, hi

where f, g, h 2 L2(X⇥ Y, px ,y ) and a, b 2 R. Furthermore, this inner product induces
the norm:

kfk , hf, fi
1
2 = E

⇥
f(x , y)2

⇤ 1
2

for every function f 2 L2(X⇥ Y, px ,y ).
It is worth noting that various well-known inequalities for Hilbert spaces are car-

ried over to this probabilistic setting. For instance, for any two functions f, g 2
L2(X⇥ Y, px ,y ), we have the well-known Cauchy-Schwarz-Bunyakovsky inequality :

|hf, gi|2 = E [f(x , y)g(x , y)]2  E
⇥
f(x , y)2

⇤
E
⇥
g(x , y)2

⇤
= kfk2 kgk2 ,

as well as the triangle inequality :

kf + gk = E
⇥
(f(x , y) + g(x , y))2

⇤ 1
2  E

⇥
f(x , y)2

⇤ 1
2 + E

⇥
g(x , y)2

⇤ 1
2 = kfk+ kgk .

Let S be a linear subspace of L2(X ⇥ Y, px ,y ) (for rigorous mathematicians, we
really mean a closed subspace, or a sub-Hilbert space). This means S is a non-empty
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subset of L2(X ⇥ Y, px ,y ) that is itself a Hilbert space with the same inner product.
Then, we have the following orthogonality principle (which can be shown to follow
from the Hilbert projection theorem in convex analysis).

Theorem 1 (Orthogonality Principle). Given g 2 L2(X⇥ Y, px ,y ), we have:

h = argmin
f2S

kg � fk2 = argmin
f2S

E
⇥
(g(x , y)� f(x , y))2

⇤

if and only if for every f 2 S:

hh� g, fi = E [(h(x , y)� g(x , y))f(x , y)] = 0 .

Proof. Since you are not required to know real analysis to take this course, we omit
analytical details that guarantee the existence and uniqueness of h as the solution to
the extremization minf2S kg � fk2. However, rest assured that the statement of the
theorem is rigorous.

To prove the forward direction, consider the function h � ✏f 2 S for any fixed
f 2 S and ✏ 6= 0, and observe using h = argminf2S kg � fk2 that:

kg � hk2  kg � h+ ✏fk2 = kg � hk2 + 2✏ hg � h, fi+ ✏
2 kfk2

which implies that:
2✏ hg � h, fi+ ✏

2 kfk2 � 0 .

If hg � h, fi > 0, then taking ✏ to be small (in magnitude) and negative contradicts
the non-negativity above. Likewise, if hg � h, fi < 0, then taking ✏ to be small and
positive contradicts the non-negativity above. Hence, we must have hg � h, fi = 0
for every f 2 S.

To prove the converse direction, note that for every f 2 S:

kg � fk2 = kg � h+ h� fk2

= kg � hk2 + 2 hg � h, h� fi+ kh� fk2

= kg � hk2 + kh� fk2

� kg � hk2

where the third equality follows from hg � h, h� fi = 0 since h � f 2 S. This
completes the proof.

Geometrically, this principle states that given a function g 2 L2(X⇥ Y, px ,y ), the
closest function to g in a subspace S (in the norm sense) is a function h 2 S such that
the error h�g is orthogonal to the subspace S. Suppose g(x , y) = x and S is some set
of possible estimators x̂(y) (which only includes functions that depend on y). Then,
the minimization in Theorem 1 corresponds to the constrained MMSE problem:

min
f2S

E
⇥
(x � f(y))2

⇤
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where each f(·) is a function of y only, and the set S may also impose further con-
straints on the estimators. The solution to this constrained MMSE problem is the
estimator x̂S(·) = argminf2S E [(x � f(y))2] that satisfies the orthogonality principle:

E [(x̂S(y)� x)f(y)] = 0

for all functions f 2 S. Intuitively, this means that the error e(x , y) = x̂S(y) � x
of this optimal estimator is orthogonal to (or uncorrelated with) any function of y .
Equivalently, x̂S(y) is the projection of x onto the subspace S. We will use this idea
to establish orthogonality characterizations of BLS and LLS estimators as corollaries
of Theorem 1 in the ensuing subsections.

2.3 Bayes’ Least-Squares Estimator

Recall that the BLS estimator x̂BLS(y) = E [x |y = y] is the solution to the optimiza-
tion problem:

x̂BLS(·) = argmin
f(·)

E
⇥
(x � f(y))2

⇤

where we minimize over all functions with domain Y. It has the desirable property
that E [x̂BLS(y)] = E [x ] (which follows from the tower property of expectation),
i.e. the BLS estimator x̂BLS(y) is unbiased. Now consider the sub-Hilbert space
S = {f : Y ! R |E [f(y)2] < +1} of L2(X ⇥ Y, px ,y ) that contains all real-valued
functions f(y) (only depending on y) with finite second moment. Informally verifying
that S is indeed a subspace is straightforward, as linear combinations of functions
of y are functions of y. Letting g(x , y) = x in Theorem 1 provides the following
orthogonality characterization of BLS estimators:

x̂BLS(·) = argmin
f2S

E
⇥
(x � f(y))2

⇤

if and only if for every function f : Y ! R (with finite second moment):

E [(x̂BLS(y)� x)f(y)] = 0 .

Therefore, the BLS estimator is defined by the property that the error e(x , y) ,
x̂BLS(y)�x is orthogonal to every function of the data y (or equivalently, the subspace
of all functions of y). In other words, the BLS estimator is the projection of x onto
the subspace S of estimators (which are functions of y).

In fact, we can derive the explicit form of the BLS estimator from its orthogonality
characterization. If for every f : Y ! R with finite second moment, we have:

E [x̂BLS(y)f(y)] = E [xf(y)] = E [E [x |y ] f(y)] ) E [(x̂BLS(y)� E [x |y ])f(y)] = 0

then x̂BLS(y) = E [x |y ], since we can take f(y) = x̂BLS(y)� E [x |y ] and use the fact
that the second moment of a random variable vanishes i↵ the random variable is zero
with probability one.
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2.4 Linear Least-Squares Estimator

Although BLS estimators are nice, they require complete knowledge of the joint dis-
tribution px ,y (·, ·). Such information may not be available in some situations. Even
when it is available, finding the BLS estimator may be computationally challeng-
ing, especially when performing real-time calculations. Under these circumstances, it
makes sense for us to trade optimality for the sake of speed and simplicity.

In particular, we often restrict our attention to the class of linear estimators. The
LLS estimator is defined as follows:

x̂LLS(·) = argmin
f(·)2S

E
⇥
(x � f(y))2

⇤

where S = {f : Y ! R |f(y) = ay + d for some a, d 2 R}. If E [y 2] < +1, one can
verify that S is a sub-Hilbert space of L2(X⇥Y, px ,y ) that contains all real-valued linear
functions f(y) (only depending on y). Note that we are essentially performing MMSE
estimation over a smaller subspace (than that in BLS estimation) here. As before,
letting g(x , y) = x in Theorem 1 provides the following orthogonality characterization

of LLS estimators:
x̂LLS(·) = argmin

f2S
E
⇥
(x � f(y))2

⇤

if and only if for every linear function f(y) = ay + d:

E [(x̂LLS(y)� x)f(y)] = 0 .

Therefore, the LLS estimator is defined by the property that the error e(x , y) ,
x̂LLS(y)� x is orthogonal to every linear function of the data y . In the lecture notes,
this characterization is used to prove that the LLS estimator has the form:

x̂LLS(y) =
cov(x , y)

var(y)
(y � E [y ]) + E [x ]

which is clearly unbiased, and has error variance:

�LLS = E
⇥
e(x , y)2

⇤
= var(x)� cov(x , y)2

var(y)
.

Finally, we mention a few more remarks. Firstly, the LLS estimator has the
advantage that it can be computed using only first and second order moments of
the joint distribution px ,y (·, ·); these quantities are much easier to obtain in practice
than px ,y (·, ·) itself. Secondly, it is proved in the lectures notes that if only the first
and second order moments of px ,y (·, ·) are available, the LLS estimator is actually the
minimax optimal MSE estimator in a precise sense. Lastly, when (x , y) are jointly
Gaussian random variables, the BLS and LLS estimators coincide.
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1 Exponential Families

Exponential families form an important class of distributions in statistics. Unfortu-
nately, it is di�cult to motivate their importance on a first sighting. This is because
the utility of exponential families is often only obvious once their basic properties have
been developed. Nevertheless, we collect some salient features of exponential families
below without going into any detailed explanations (since many of these features will
be covered later in the course).

1. Exponential families admit certain conjugate families of distributions (which
are themselves exponential families). In the Bayesian estimation setting, such
conjugate priors make posterior belief updates particularly e�cient. We will
see this later in the course.

2. In the non-Bayesian estimation setting, if we are performing i.i.d. sampling from
some likelihood model, then exponential families are the only models for which
there are su�cient statistics whose dimensions remain bounded as the the sam-
ple size grows. This is the content of the well-known Pitman-Koopman-Darmois
theorem (which is proved using various regularity conditions). Although we will
touch upon this later, a thorough treatment is beyond the scope of this course.

3. E�cient estimators exist for a likelihood model if and only if the model is de-
scribed by an exponential family with certain additional constraints. A detailed
exposition of this result can be found in the lecture notes.

4. Exponential families are maximum entropy distributions subject to linear (ex-
pectation) constraints such as moment constraints. For this reason, they are
sometimes used as priors for di↵erent models in order to capture the maximum
amount of uncertainty about the latent variable. We will see this later in the
course.

5. Exponential tilting is a very useful tool in probability theory. As we will see later
in the course, it will be indispensable in proving and deriving intuition about
results from large deviations theory such as the Cramér-Cherno↵ theorem.

6. Exponential families are analytically tractable models that allow us to prove
things rigorously about them. For instance, in a canonical exponential family,
the cumulants of y can be easily calculated from the log-partition function.

Note: Section 1.2 is an edited and revised version of material from previous TAs of the course.
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1.1 Definition

Formally, we define a (one-parameter) exponential family as the parametrized set
of distributions {py (·; x); x 2 X} over the alphabet Y that have the form:

8x 2 X, 8y 2 Y, py (y; x) = exp (�(x)t(y)� ↵(x) + �(y)) (1)

for some choice of natural parameter � : X ! R, natural statistic t : Y ! R (which is
also a su�cient statistic), and log-base function � : Y ! R. The log-partition function
↵ : X ! R (where the name comes from statistical mechanics) is the logarithm of the
normalization constant:

8x 2 X, exp(↵(x)) =
X

y2Y

exp (�(x)t(y) + �(y))

where we assume that Y is discrete; the continuous setting is analogous with the
sum replaced by an integral. Typically, we require that such an exponential family
is regular, i.e. Y does not depend on the parameter x. Furthermore, the parameter
space X is chosen such that the normalization constants are finite, and is typically
some interval so that we can freely di↵erentiate ↵(·) on X� (the interior of X). Finally,
we often consider models where the base function exp(�(·)) is actually a valid base
distribution. In this context, the exponential family can be interpreted as a (general)
tilting of the base distribution. Since several properties of exponential families are
explained at great length in the lecture notes, we omit a discussion of them here.

1.2 A Distribution that is not an Exponential Family

In the lecture notes, a considerably wide range of distributions are shown to be
exponential families. However, not all distributions can be parametrized as expo-
nential families with a finite number of natural parameters. In this subsection, we
present an example of a family of heavy-tailed distributions that cannot be written
as a one-parameter exponential family. Consider the parametrized family of pdfs
{py (·;µ) : µ > 0} with support R+:

8µ > 0, 8y � 0, py (y;µ) =
µ

(µ+ y)2
(2)

which are a specialization of the so called Burr or Singh-Maddala distributions (and
are one-sided analogs of the better known Cauchy distributions). We claim that this
model does not belong to a one-parameter exponential family.

We prove this by contradiction. Suppose that the model py (·;µ) belongs to a
one-parameter exponential family:

8µ > 0, 8y � 0, ln py (y;µ) = �(µ)t(y)� ↵(µ) + �(y) .
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On the one hand, taking the second partial derivative @2

@µ@y of this leads to the following
factorized form:

@2

@µ@y
ln py (y;µ) = �0(µ)t0(y) .

So, if we define g(µ, y) = @2

@µ@y ln py (y;µ), then the formula above implies that:

g(µ1, y)

g(µ2, y)
=

�0(µ1)t0(y)

�0(µ2)t0(y)
=

�0(µ1)

�0(µ2)
(3)

which is not a function of y. On the other hand, using the form of the distribution
in (2), we know that:

g(µ, y) =
@2

@µ@y
ln py (y;µ) =

2

(µ+ y)2

which in turn implies that:

g(µ1, y)

g(µ2, y)
=

(µ2 + y)2

(µ1 + y)2
.

Since g(µ1, y)/g(µ2, y) depends on y here, it contradicts the form presented in (3)
(which is derived from the one-parameter exponential family assumption). Therefore,
the model py (·;µ) is not a one-parameter exponential family. This completes the
proof. In closing this section, we remark that other notable distributions that are not
exponential families include the Cauchy distributions and their generalizations, the
Student’s t-distributions.

2 Su�cient Statistics

In this section, we will consider su�cient statistics from a non-Bayesian standpoint
as this stays truer to the historical development of the subject. The lecture notes
o↵er Bayesian analogs of some of the topics we will cover. Recall that the setup of
non-Bayesian parameter estimation involves a deterministic parameter x 2 X that de-
termines the likelihood py (·; x) of a random variable y 2 Y. Let us assume throughout
this discussion that X and Y are fixed intervals in R (and {py (·; x)|x 2 X} are pdfs).
In general, a statistic for such a model refers to a deterministic function t : Y ! R,
whose purpose is often to capture some useful information about the underlying pa-
rameter x. In the sequel, we will let t = t(y) be the random variable corresponding
to this statistic, and T ✓ R be the image of t. The remaining subsections introduce
various notions of statistics that are standard in the statistical inference literature.
Some of this ensuing exposition is inspired by and structured like the wonderful online
resource http://www.math.uah.edu/stat/point/Su�cient.html.
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2.1 Su�ciency

In the early 1900’s, Fisher introduced two important ideas (actually, he introduced
many more, but we have only seen two so far) that revolutionized the study of estima-
tion. One was the notion of intrinsic accuracy (which is known as Fisher information
today), and the other was the related notion of su�cient statistics. We have already
seen Fisher information in this course, so we now turn to the other idea. (The rela-
tionship between these two notions is that the data processing inequality for Fisher
information is met with equality i↵ we have a su�cient statistic. This is partly hinted
at in the problem set, and will become more evident when we study data process-
ing inequalities for mutual information and Kullback-Leibler divergence later in the
course.) Intuitively, a su�cient statistic captures all the information about x that is
relevant for inference. The next definition rigorizes this intuition.

Definition 1 (Su�cient Statistic). A statistic t : Y ! R of y is said to be su�cient
for x (with respect to the likelihood py (·; x)) if the conditional distribution py |t(·|·; x)
is not a function of x for all x 2 X.

While this defines su�cient statistics, constructing explicit su�cient statistics is
often di�cult. The next theorem characterizes a factorization structure that su�cient
statistics impart on the likelihood model. This structure can sometimes be used to
identify su�cient statistics as shown in the lecture notes.

Theorem 1 (Fisher-Neyman Factorization). A statistic t = t(y) of y is su�cient
for x if and only if there exist functions a : T ⇥ X ! R and b : Y ! R such that:

8x 2 X, 8y 2 Y, py (y; x) = a(t(y), x)b(y) .

We omit a proof of this result as it can be found in the lecture notes.

2.2 Su�ciency and Non-Bayesian Estimation

We next look at the relationship between su�cient statistics and non-Bayesian pa-
rameter estimation. Our first result here establishes that maximum likelihood (ML)
estimators (when they exist) can be taken to be functions of the su�cient statistic
t(y) rather than the variable y. This agrees with the intuition that a su�cient statistic
contains all the information necessary for inference about x.

Theorem 2 (Su�ciency and ML Estimation). If t = t(y) is a su�cient statistic of
y for x, and an ML estimator for x exists, then there exists an ML estimator x̂ML(t)
for x that is a function of t.

Proof. Since an ML estimator exists, it can be found by maximizing the log-likelihood
x 7! ln py (y; x). Using the Fisher-Neyman factorization theorem, this corresponds
to maximizing x 7! ln a(t(y), x) + ln b(y). The maximizing argument to this latter
function depends only on t(y) since ln b(y) is a constant as a function of x. So, there
exists an ML estimator x̂ML(t) for x that is a function of t.
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Our second result is a well-known theorem of Rao and Blackwell that o↵ers a
systematic way to improve unbiased estimators in a mean-square error sense.

Theorem 3 (Rao-Blackwell Theorem). If t = t(y) is a su�cient statistic of y for
x, and x̂(y) is an unbiased estimator for x, then x̂RB(t) , E [x̂(y)|t] is an unbiased
estimator for x that is uniformly better in a mean-square error sense:

8x 2 X, E
⇥
(x̂RB(t(y))� x)2

⇤
 E

⇥
(x̂(y)� x)2

⇤
.

Proof. First notice that x̂RB(t) = E [x̂(y)|t] is a valid estimator (that does not depend
on x) because the conditional distribution py |t(·|·; x) does not depend on x since t is
a su�cient statistic. Moreover, it is unbiased because E [x̂RB(t)] = E [E [x̂(y)|t]] =
E [x̂(y)] = x (using the tower property of expectation). To complete the proof, observe
that for any x 2 X:

E
⇥
(x̂RB(t(y))� x)2

⇤
= E

⇥
(E [x̂(y)|t]� x)2

⇤

 E
⇥
E
⇥
(x̂(y)� x)2 |t

⇤⇤

= E
⇥
(x̂(y)� x)2

⇤

where the inequality follows from conditional Jensen’s inequality.

The process of constructing the estimator x̂RB(t) from an unbiased estimator
x̂(y) is known as Rao-Blackwellization in statistics. The Rao-Blackwell estimator
x̂RB(t) averages the values of the unbiased estimator x̂(y) over all values of y that
produce t = t(y). This can intuitively be perceived as a form of “filtering” that
reduces the sensitivity of the estimator to particular choices of y that correspond to
the same value of t. This is useful because all the information for inference about
x can be found in the su�cient statistic t anyway. So, extra variations in y given
t only add to the overall variance without helping in the estimation of x. From
the perspective of constructing good unbiased estimators, this tells us that we can
restrict our attention to estimators that are functions of t since Rao-Blackwellization
will leave such estimators unchanged. Finally, we note that although we only proved
that x̂RB(t) has uniformly lower expected mean-square error, it is straightforward to
see from the proof that x̂RB(t) actually achieves uniformly lower expected cost for
any convex cost function (to which we can apply conditional Jensen’s inequality).

2.3 Minimality

Since a particular model can have many di↵erent su�cient statistics, it is worthwhile
to find su�cient statistics that are intuitively the “most compact”; indeed, it is
conceivable that such statistics are useful in applications. We dub such su�cient
statistics as minimal, and formally define them as follows.

5



Definition 2 (Minimal Su�cient Statistic). A su�cient statistic t? = t?(y) of y for
x is minimal if for any other su�cient statistic t = t(y) of y for x, there exists a
function g : T ! R such that t? = g(t).

Much like the definition of su�ciency, it is di�cult to identify minimal su�cient
statistics from this definition. So, there are several su�cient conditions in the litera-
ture to determine minimality of su�cient statistics. For example, we can use Theorem
2 to deduce that if a model has a unique ML estimator x̂ML(y) for x that is also a
su�cient statistic, then x̂ML(y) must be a minimal su�cient statistic since it is a
function of every su�cient statistic. There are other su�cient conditions for mini-
mality that depend on exponential family structure; see the problem set. We remark
that minimal su�cient statistics usually always exist, but there are pathological in-
stances when they do not exist. On the other hand, when they exist, they are not
unique as we can apply invertible maps to generate other minimal statistics. In the
next subsection, we turn to the concept of completeness, which provides yet another
su�cient condition for minimality.

2.4 Completeness

As shown next, complete su�cient statistics have a rather analytical definition. The
definition is justified by the various results in mathematical statistics that depend on
it, rather than any explicitly tangible intuition. Sometimes, a finer notion of boundedly
complete statistics is required for a rigorous treatment of the ensuing results, but we
will omit this aspect from the discussion.

Definition 3 (Complete Su�cient Statistic). A su�cient statistic t = t(y) of y for
x is said to be complete if every function f : T ! R, we have:

8x 2 X, E [f(t)] = 0 ) 8x 2 X, P (f(t) = 0) = 1

where the expectation E [·] and the probability measure P (·) are determined by py (·; x).

Note that the condition 8x 2 X, P (f(t) = 0) = 1 can be interpreted as f(·) ⌘ 0
(as shown in the lecture notes) because f(·) behaves like the everywhere zero func-
tion with respect to the likelihood model under consideration. Completeness can be
interpreted in the following functional analytic sense that explains why we call such
statistics “complete.” We can perceive the set of distributions {pt(·; x) : x 2 X} as
vectors in a functional space. Such a set of vectors is called “complete” when it spans
the entire space, or equivalently, for any function f(·):

8x 2 X, E [f(t)] = hf(·), pt(·; x)i =
Z

T

f(t)pt(t; x) dt = 0 ) f(·) ⌘ 0

i.e. if f is orthogonal to the spanning set of vectors, then f must be the zero vec-
tor. Hence, a su�cient statistic t = t(y) is complete if its corresponding likelihoods

6



are complete in the functional analytic sense. We remark that complete su�cient
statistics need not exist for every model, and when they exist, are usually not unique.

From the perspective of estimation, we can interpret the definition of completeness
as follows. Think of f(t) as a statistic of t that is constructed to be an unbiased
estimator for 0 (where 0 is perceived as a function of x). Then, completeness of t
implies that the statistic that is 0 with probability one is the only such unbiased
estimator. As we will see, the main use of completeness in various proofs is to argue
that di↵erent estimators (that are functions of t) are equal by showing that their
di↵erence is zero. The next result illustrates that completeness is a su�cient condition
for minimality.

Theorem 4 (Bahadur’s Theorem). If t = t(y) is a complete su�cient statistic of
y for x, and a minimal su�cient statistic exists, then t is also a minimal su�cient
statistic.

A proof of this result can be found in the lecture notes. The utility of this theorem
arises from the fact that completeness can sometimes be an easy condition to check
(often due to the invertibility of Laplace and Z-transforms); see the lecture notes and
exercises for examples. Note however that completeness is not a necessary condition
for minimality.

We next introduce a celebrated classical result due to Lehmann and Sche↵é which
shows that complete su�cient statistics can be used to generate minimum-variance
unbiased (MVU) estimators via Rao-Blackwellization.

Theorem 5 (Lehmann-Sche↵é Theorem). If t = t(y) is a complete su�cient statistic
of y for x, and x̂(t) is an unbiased estimator for x, then x̂(t) is an MVU estimator
for x.

Proof. Fix any unbiased estimator x̃(y) for x. Then, x̂RB(t) = E [x̃(y)|t] is an un-
biased estimator for x with uniformly lower mean-square error by the Rao-Blackwell
theorem since t is a su�cient statistic. Furthermore, x̂RB(t) � x̂(t) is a function of
t, and E [x̂RB(t)� x̂(t)] = x � x = 0 for every x 2 X (using the tower property of
expectation). Since t is complete, we have x̂RB(t) = x̂(t) with probability one for
every x 2 X. Hence, x̂(t) has uniformly lower mean-square error than every unbiased
estimator x̃(y) for x. This means that it is the MVU estimator for x.

Some remarks are in order. Firstly, the Lehmann-Sche↵é theorem can be easily
generalized for convex cost functions (since the Rao-Blackwell theorem admits such
a generalization). Secondly, x̂(t) is the unique function of t that is an unbiased es-
timator of x. This can be easily argued using completeness as shown in the proof.
Thirdly, the Lehmann-Sche↵é theorem o↵ers a systematic way to find MVU estima-
tors: find a complete su�cient statistic t and an unbiased estimator x̃(y), and then
Rao-Blackwellize x̃(y) to get the MVU estimator x̂MV U(y) = x̂RB(t). While this
provides an alternative approach to constructing MVU estimators (in contrast to ver-
ifying whether an e�cient estimator exists that meets the Cramér-Rao bound with
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equality for all x 2 X), it can sometimes be di�cult to find a complete su�cient statis-
tic and/or evaluate the conditional expectation required for Rao-Blackwellization.

2.5 Ancillarity

Finally, we introduce the concept of ancillary statistics, which is an idea due to Fisher.

Definition 4 (Ancillary Statistic). If t = t(y) is a statistic whose distribution pt(·; x)
does not depend on x, then it is known as an ancillary statistic for x.

Since an ancillary statistic has no information about the parameter x, we intu-
itively expect it to be independent of a su�cient statistic that contains all of the
relevant information for inference about x “in a compact fashion.” It turns out that
completeness (rather than minimality) is the right way to define compactness here.
The next theorem formally states this result.

Theorem 6 (Basu’s Theorem). If t = t(y) is a complete su�cient statistic of y for
x, and s = s(y) is an ancillary statistic of y , then t and s are independent.

The proof of this result can be found in the problem set, which also o↵ers examples
of ancillary statistics. In closing, we note that together, Basu’s theorem, Bahadur’s
theorem, and the Lehmann-Sche↵é theorem demonstrate the utility of completeness
in mathematical statistics.
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1 Di↵erential Entropy

In our study of continuous information measures, we came across a natural analog of
discrete Shannon entropy for probability density functions (PDFs) known as di↵er-

ential entropy.

Definition 1 (Di↵erential Entropy). Given a continuous random vector x 2 Rn
with

PDF px(·) that has support X ✓ Rn
, we define the di↵erential entropy of x as:

h(x) , E

log

✓
1

px(x)

◆�
=

Z

X

px(x) log

✓
1

px(x)

◆
dx

when the expectation is well-defined. All logarithms will be assumed to be natural.

Unlike KL divergence and mutual information, which remain non-negative and
invariant to coordinate transformations in the continuous setting, it was shown in
the lecture notes that di↵erential entropy is neither (necessarily) non-negative nor
(necessarily) invariant to coordinate transformations. As a result, one should be
careful when using di↵erential entropy arguments. The next subsection illustrates
using examples the various values that di↵erential entropy can take on (in the scalar
setting).

1.1 Possible Values of Di↵erential Entropy

Example 1 (h(x) 2 R). Suppose x has a uniform PDF on [0,�] with � > 0. Then,
the di↵erential entropy of x is:

h(x) =

Z �

0

1

�
log (�) dx = log (�)

which is positive for � > 1, zero for � = 1, and negative for � < 1. This shows that
di↵erential entropy can be any real number.

Example 2 (h(x) = +1 [1]). Suppose x has PDF:

px(x) =

⇢ 1
x log(x)2 , x � e

0 , x < e

Copyright © 2023 by A. Makur



which is non-negative and satisfies:

Z +1

�1
px(x) dx =

Z +1

e

1

x log(x)2
dx =

Z +1

1

1

u2
du = 1

using the substitution u = log(x). Then, the di↵erential entropy of x is +1 because:

h(x) =

Z +1

e

log(x log(x)2)

x log(x)2
dx =

Z +1

e

log(x)

x log(x)2
+

2 log(log(x))

x log(x)2| {z }
�0

dx

�
Z +1

e

1

x log(x)
dx =

Z +1

1

1

u
du = +1

where we again use the substitution u = log(x). We note that if var(x) < +1, then
h(x) < +1.

Example 3 (h(x) = �1 [1]). Suppose x has PDF whose support is the union of
disjoint intervals {Ik : k = 2, 3, 4, . . . } in R such that the length of Ik is 1/(k log(k))2.
Define the constant:

C =
1X

k=2

1

k log(k)2
< +1

whose finiteness follows from the integral test:

Z +1

2

1

x log(x)2
dx < +1. The PDF

of x is:

px(x) =

⇢
k
C , x 2 Ik for k = 2, 3, 4, . . .
0 , otherwise

which is non-negative and satisfies:

Z +1

�1
px(x) dx =

1X

k=2

Z

Ik

k

C
dx =

1X

k=2

k

C(k log(k))2
=

1

C

1X

k=2

1

k log(k)2
= 1 .

The di↵erential entropy of x is:

h(x) =
1X

k=2

Z

Ik

k

C
log

✓
C

k

◆
dx =

1

C

1X

k=2

log(C)� log(k)

k log(k)2

= log(C)� 1

C

1X

k=2

1

k log(k)
= �1

where the final equality follows from the integral test:

Z +1

2

1

x log(x)
dx = +1. We

note that if the PDF of x is bounded, then h(x) > �1.
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Example 4 (h(x) undefined [2]). Suppose x has PDF whose support is the union of
disjoint intervals {Ik : k = 1, 2, 3, . . . } in R such that the length of Ik is

C
k2 exp

�
�(�1)k

· k
�
, where C = 6/⇡2. In particular, the PDF of x is:

px(x) =

⇢
exp
�
(�1)kk

�
, x 2 Ik for k = 1, 2, 3, . . .

0 , otherwise

which is non-negative and satisfies:
Z +1

�1
px(x) dx =

1X

k=1

Z

Ik

exp
�
(�1)kk

�
dx = C

1X

k=1

1

k2
= 1 .

The di↵erential entropy of x is:

h(x) = �
1X

k=1

Z

Ik

exp
�
(�1)kk

�
log
�
exp
�
(�1)kk

��
dx

= �
1X

k=1

C

k2
exp
�
�(�1)kk

�
exp
�
(�1)kk

�
(�1)kk

= C
1X

k=1

(�1)k+1

k

which is a conditionally convergent series. By the Riemann series (rearrangement)
theorem, the terms in this series can be permuted to diverge or converge to any chosen
value. So, the di↵erential entropy is undefined. This shows that the expectation in
Definition 1 indeed may not be well-defined.

1.2 Properties of Di↵erential Entropy

We next present some basic properties of di↵erential entropy (cf. [2]). Note that con-
ditional and joint di↵erential entropies can be defined from Definition 1 analogously
to the discrete case.

Theorem 1 (Properties of Di↵erential Entropy). Suppose x = (x1, . . . , xn) 2 Rn
is a

continuous random vector such that all joint, conditional, and marginal PDFs exist,

and y is another arbitrary random vector such that the conditional PDFs px|y(·|·)
exist. Assuming all the di↵erential entropy terms below exist and are finite, we have

the following results:

1. (Uniform maximizes entropy) If the support of the PDF px(·) is a bounded set

X ✓ Rn
with vol(X) > 0, then:

h(x)  log(vol(X))

with equality if and only if x is uniform on X, where vol(·) denotes the volume

(or more precisely, Lebesgue measure) in Rn
.
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2. (Chain rule)

h(xn) =
nX

k=1

h
�
xk|xk�1

�

where x0 is a placeholder representing no conditioning, and xk = (x1, . . . , xk) for
k = 1, . . . , n (so that x = xn).

3. (Conditioning reduces entropy)

h(x|y)  h(x)

with equality if and only if x and y are independent.

4. (Tensorization)

h(x) 
nX

k=1

h(xk)

with equality if and only if x1, . . . , xn are mutually independent.

Proof.

1. Let q(·) denote the uniform PDF on X, which is well-defined as X is a bounded
set with vol(X) > 0. Then, we have via Gibbs’ inequality:

0  D(px||q) =
Z

X

px(x) log

✓
px(x)

1/vol(X)

◆
dx = log(vol(X))� h(x)

which proves the result. Note that we have equality in Gibbs’ inequality if and only
if the input distributions are the same.

2. This easily follows from telescoping as shown below:

pxn(x
n) =

nY

k=1

pxk|xk�1

�
xk|xk�1

�

� log(pxn(x
n)) = �

nX

k=1

log
�
pxk|xk�1

�
xk|xk�1

��

h(xn) = �E [log(pxn(x
n))] = �

nX

k=1

E
⇥
log
�
pxk|xk�1

�
xk|xk�1

��⇤
=

nX

k=1

h
�
xk|xk�1

�
.

3. This can be verified using Gibbs’ inequality as mentioned in the lecture notes.
4. This follows from parts 2 and 3.

2 Applications of Di↵erential Entropy

Di↵erential entropy turns out to have applications in various areas of mathematics.
The next two subsections present two seemingly unrelated results from linear alge-
bra and geometry that admit elegant proofs using the aforementioned properties of
di↵erential entropy.
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2.1 Hadamard’s Inequality

In matrix theory, Hadamard’s inequality is an upper bound on the absolute value
of the determinant of a matrix in terms of the Euclidean `2-norms of its columns.
The inequality turns out to be a direct consequence of the tensorization property of
di↵erential entropy.

Theorem 2 (Hadamard’s Inequality). For every n ⇥ n real matrix A 2 Rn⇥n
with

columns {ak 2 Rn : k = 1, . . . , n}, we have:

| det(A)| 
nY

k=1

kakk

where k·k denotes the Euclidean `2-norm. Furthermore, if A is full rank, then equality

is achieved if and only if the columns {ak 2 Rn : k = 1, . . . , n} are orthogonal.

Proof. If A is not full rank, then det(A) = 0 and the inequality trivially holds. So,
we assume without loss of generality that A is full rank. Suppose x ⇠ N(0, In) is
an n-length i.i.d. standard Gaussian random vector with mean 0 and covariance In
(the n ⇥ n identity matrix). Define the jointly Gaussian random vector y = ATx ⇠
N(0, ATA), where the mean and covariance can be calculated as follows:

E [y] = AT E [x] = 0 ,

E
⇥
yyT
⇤
= AT E

⇥
xxT
⇤
A = ATA .

Note that the random variables yk ⇠ N
�
0, kakk2

�
for k = 1, . . . , n in y are also

Gaussian. Using the tensorization property of di↵erential entropy, and the formulae
for di↵erential entropies of Gaussian random variables and vectors derived in the
lecture notes, we have:

1

2
log
�
(2⇡e)n det

�
ATA

��
= h(y) 

nX

k=1

h(yk) =
nX

k=1

1

2
log
�
2⇡e kakk2

�

where upon exponentiating and simplifying, we get the desired inequality:

det
�
ATA

�
= | det(A) |2 

nY

k=1

kakk2 .

Equality is achieved in this inequality if and only if y1, . . . , yn are mutually inde-
pendent. This happens if and only if the o↵-diagonal entries of ATA (the covariance
matrix of y) are all zero, or equivalently, when the columns of A are all orthogonal.

Geometrically, this inequality states that the volume of a hyper-parallelepiped
(which is given by the absolute value of the determinant) is bounded by the product
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of all its lengths. Equivalently, it says that the volume of a hyper-parallelepiped with
given lengths is maximized when it is actually a hyper-rectangle (or n-orthotope). In
information theory, this result turns out to be useful in the analysis of water-filling
solutions for channels with colored Gaussian noise. A discussion of water-filling is
beyond the scope of this course, so we refer readers to [3] for further details.

2.2 Bollobás-Thomason Box Theorem

The Bollobás-Thomason box theorem from the geometry and isoperimetry literature
is yet another result that follows in a straightforward manner from basic properties
of di↵erential entropy. It illustrates that a hyper-rectangle simultaneously minimizes
the volumes of all its projections. We follow the exposition in [2].

Theorem 3 (Bollobás-Thomason Box Theorem). Suppose K ✓ Rn
is a closed and

bounded set. For S ✓ [n] , {1, . . . , n}, let KS be the projection of K onto the

subset S of coordinate axes. Then, there exists a hyper-rectangle R ✓ Rn
such that

vol(R) = vol(K), and for every non-empty S ✓ [n]:

vol(RS)  vol(KS)

where vol(·) denotes the volume (or more precisely, Lebesgue measure) in the appro-

priate |S|-dimensional Euclidean space.

Proof. If vol(K) = 0, then we can take a single point as R. So, we assume without
loss of generality that vol(K) > 0. Suppose x = (x1, . . . , xn) is uniformly distributed
on K such that h(x) = log(vol(K)). Define the constants {rk > 0 : k = 1, . . . , n}
such that:

8k 2 {1, . . . , n}, log(rk) = h
�
xk|xk�1

�
.

Using these constants, we define a hyper-rectangle R with lengths r1, . . . , rn such that
vol(R) =

Qn
k=1 rk. The chain rule establishes that vol(R) = vol(K):

log(vol(K)) = h(x) =
nX

k=1

h
�
xk|xk�1

�
= log

 
nY

k=1

rk

!
= log(vol(R)) .

For a set A 2 [n], let xA denote the random vector {xk : k 2 A} (where conditioning
on x? corresponds to no conditioning at all). Fix any non-empty set S ✓ [n]. Then,
we have the following sequence of inequalities:

log(vol(KS)) � h(xS)

=
nX

k=1

S(k)h
�
xk|x[k�1]\S

�

�
X

k2S

h
�
xk|xk�1

�
= log

 
Y

k2S

rk

!

= log(vol(RS))
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where the first line holds because the uniform distribution maximizes di↵erential
entropy, the second line follows from the chain rule, and the third line holds because
conditioning reduces entropy. Hence, vol(RS)  vol(KS) for every non-empty set
S ✓ [n]. This completes the proof.

3 Relation to Fisher Information

Finally, we present an intriguing relation between di↵erential entropy and Fisher
information (in the scalar setting) based on [4]. Before we present this relation, we
have to define the notion of Fisher information for a single PDF. Given a random
variable x with PDF px(·) that has support R, we can define a parametrized family
of PDFs {px(·;�) : � 2 R} such that px(x;�) = px(x� �). The Fisher information of
x is given by the Fisher information of this translation family:

J(x) , Jx(�) = var

✓
p0x(x)

px(x)

◆
= E


p0x(x)

2

px(x)2

�
(1)

where p0x(x) = @
@xpx(x), and we assume su�cient regularity conditions (as in the

lecture notes) so that (1) is well-defined. The next subsection derives the well-known
de Bruijn’s identity.

3.1 De Bruijn’s Identity

Theorem 4 (De Bruijn’s Identity). Given independent random variables x and z
such that J(x) exists and var(z) < +1, we have:

d

dt
h(x +

p
tz)

����
t=0

=
1

2
var(z)J(x) .

Proof. We follow the proof in [4], but neglect all issues of rigor (to rigorously prove
this result, one needs to apply the dominated convergence theorem at appropriate
places). Letting ✓ =

p
t and y = x + ✓z , since the left-hand side satisfies:

d

dt
h(x +

p
tz)

����
t=0

= lim
✓!0

h(x + ✓z)� h(x)

✓2

by definition of derivative, it su�ces to prove that:

I(y ; z) = h(x + ✓z)� h(x) =
1

2
✓2 var(z)J(x) + o

�
✓2
�

(2)

where I(y ; z) = h(x + ✓z) � h(x + ✓z |z) = h(x + ✓z) � h(x) by the translation
invariance of di↵erential entropy (check this!), and o(✓2) denotes a function satisfying
lim✓!0 o(✓2)/✓2 = 0. Now observe that:

I(y ; z) = Epz

⇥
D(py |z ||py )

⇤
.
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So, for every fixed z = z, we must compute the KL divergence D(py |z=z||py ). We
construct a parametric family of PDFs {pu(·; ✓) : ✓ 2 R} such that D(py |z=z||py ) =
D(pu(·; 0)||pu(·; ✓)). Suppose pu(u; ✓) = py (y) = px+✓z(y) and pu(u; 0) = py |z(y|z) =
px(y� ✓z), then we must also let u = y� ✓z for consistency (note that z is fixed, and
u and y vary). Hence, we define:

pu(u; ✓) , px+✓z(u+ ✓z) = py (y)

and plugging in ✓ = 0 produces pu(u; 0) = py |z(y|z) = px(u). Since we have merely
translated the PDFs py |z(·|z) and py (·) to produce pu(·; 0) and pu(·; ✓) respectively,
we have D(py |z=z||py ) = D(pu(·; 0)||pu(·; ✓)). This means that:

I(y ; z) = Epz [D(pu(·; 0)||pu(·; ✓))] .

Next, recall from the problem sets that (for any fixed z = z):

D(pu(·; 0)||pu(·; ✓)) =
1

2
✓2Ju(0) + o

�
✓2
�

where Ju(0) is the Fisher information that u carries about ✓ when ✓ = 0. To compute
this quantity, notice that for fixed y = y:

pu(u; 0) = py |z(y|z) = px(y � ✓z) = px(y)� ✓zp0x(y) + o(✓)

) pu(u; ✓) = py (y) = Epz

⇥
py |z(y|z)

⇤
= px(y)� ✓E [z ] p0x(y) + o(✓)

) pu(u; ✓) = pu(u; 0) + ✓(z � E [z ])p0x(u+ ✓z) + o(✓)

) d

d✓
pu(u; ✓)

����
✓=0

= lim
✓!0

pu(u; ✓)� pu(u; 0)

✓
= (z � E [z ])p0x(u)

where the first equation follows from Taylor’s theorem, the second equation follows
from taking expectations with respect to z , and the third equation is obtained by
subtracting the first equation from the second. Thus, we get for any fixed z = z:

Ju(0) = Epu(·;0)


(z � E [z ])2p0x(u)

2

pu(u; 0)2

�
= (z � E [z ])2 Epx

"✓
p0x(u)

px(u)

◆2
#
= (z � E [z ])2J(x)

which implies that:

D(pu(·; 0)||pu(·; ✓)) =
1

2
✓2(z � E [z ])2J(x) + o

�
✓2
�

) I(y ; z) =
1

2
✓2 var(z)J(x) + o

�
✓2
�

where the second equation follows from taking expectations with respect to z . This
completes the proof.
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Intuitively, de Bruijn’s identity portrays that the “sensitivity” of a random variable
to some independent and additive noise is given by the Fisher information of the
random variable. To further elaborate on this, we interpret x as a sender’s signal, z
as channel noise with var(z) = 1, ✓ as the noise standard deviation (or amplification),
and y as the received signal. Then, de Bruijn’s identity or its equivalent version in (2)
states that the mutual information between the received signal and the noise is locally
quadratic as a function of ✓. The curvature of this quadratic function is given by the
Fisher information J(x). This means that larger values of J(x) make the received
signal more dependent on the noise for a given value of ✓. Therefore, a higher Fisher
information implies greater sensitivity to noise. This o↵ers another interpretation for
Fisher information.

One popular application of de Bruijn’s identity is to prove the so called entropy

power inequality. It is also used extensively in the information theory literature on
(Bayesian and non-Bayesian) Cramér-Rao bounds and uncertainty principles. In
closing, we remark that the result from the problem set relating mutual information
(between the input and output of an additive Gaussian noise channel) and minimum

mean-square error as functions of signal-to-noise ratio (originally derived in [5]) is
closely related to de Bruijn’s identity as shown in [4].
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1 Introduction

Markov Chain Monte Carlo (MCMC) methods address the problem of sampling from
a given distribution by first constructing a Markov chain whose stationary distribution
is the given distribution, and then sampling from this Markov chain. Since there are
broad classes of Markov chains for which the distribution over states converges to the
stationary distribution, MCMC methods such as the Metropolis-Hastings algorithm
eventually produce samples from the desired distribution (or some distribution “close”
to it). A natural question that arises here is:

How long do we have to run a Markov chain before its distribution over states is

“close” to the stationary distribution?

In the Markov chain literature, the length of time a Markov chain must run until its
distribution is close to the stationary distribution is known as its mixing time. As
mentioned in the lecture notes, mixing times determine the burn-in period of MCMC
algorithms (i.e. they determine how many samples must be discarded before useful
samples are produced). In the sequel, we will try to answer this question.

1.1 Basics of Markov Chains

We begin by recalling some basic definitions of Markov chains.

Definition 1 (Markov Chain). A Markov chain is a discrete-time stochastic process

{xn : n � 0} with each random variable taking values in a countable state space X,
that satisfies the Markov property:

P (xn = xn|xn�1 = xn�1, . . . , x0 = x0) = P (xn = xn|xn�1 = xn�1)

for every n � 1 and x0, . . . , xn 2 X such that P (x0 = x0, . . . , xn�1 = xn�1) > 0. We

say {xn : n � 0} is a finite state Markov chain if X is a finite set, and we say it is

time-homogeneous if for every n � 1 and every x, y 2 X:

P (xn = y|xn�1 = x) = P (x1 = y|x0 = x) .

Copyright © 2023 by A. Makur



We will only consider time-homogeneous finite state Markov chains in our discus-
sion. So, we will refer to a time-homogeneous finite state Markov chain as an “MC”
from hereon. Without loss of generality, let X = {1, . . . , |X|} with |X| � 2, and let
P denote the simplex of all probability distributions on X. We will assume that all
distributions in P are row vectors, i.e. each µ 2 P can be represented as:

µ = [µ(1) µ(2) · · · µ(|X|)] . (1)

Observe that given the initial state, the distribution of an MC can be succinctly
described by its one-step transition probabilities:

8x, y 2 X, W (x, y) , P (x1 = y|x0 = x) (2)

which we usually stack into an |X|⇥ |X| stochastic matrix W whose (x, y)th element
is W (x, y) for all x, y 2 X (as shown in the lecture notes). W is an entry-wise non-
negative matrix whose rows sum to 1. In particular, we will denote the xth row of
W as W (x, ·) 2 P (which is the conditional distribution of the next state given the
current state is x 2 X).1

It is straightforward to verify that for every n � 1 and every x, y 2 X:

W n(x, y) = P (xn = y|x0 = x) (3)

which shows that W n(x, ·) 2 P is the conditional distribution of the nth state given
the initial state is x 2 X (Chapman-Kolmogorov equation). Moreover, if the initial
distribution of the MC is px0 2 P, then the distribution of xn for every n � 1 can be
obtained by:

pxn = px0W
n . (4)

Typically, we study properties of MCs that only depend on the transition probabili-
ties. As a result, we usually do not specify an initial distribution, and represent an
MC with its stochastic transition probability matrix W .

We next present some more definitions relevant to our discussion.

Definition 2 (Irreducibility and Aperiodicity). An MC with stochastic transition

probability matrix W is called irreducible if for every pair of states x, y 2 X, there
exists some n � 0 such that W n(x, y) > 0. If W is irreducible, then we say it is

aperiodic if every state x 2 X has period dx , gcd{n � 1 : W n(x, x) > 0} = 1.

These definitions turn out to be the precise conditions under which we observe the
behavior of MCs converging to their stationary distributions over time. Intuitively, an
MC is irreducible if it is possible to get to any state from any other state after a finite
sequence of transitions. This condition allows probabilities to “flow” to di↵erent states
even if all the probability is initially concentrated at a particular state. However,

1Note that we use slightly di↵erent notation from the lecture notes here for ease of exposition.
For example, we do not use boldface for matrices and vectors.
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irreducibility does not preclude the MC with X = {0, . . . , |X| � 1} where transitions
happen from state x 2 X to state x + 1 (mod |X|) with probability 1. This MC is
irreducible, and each of its states has period |X|. If we start this chain at state 0 (i.e.
P (x0 = 0) = 1), we cannot hope for this probability to “di↵use” to all states over time,
because the probability mass will periodically cycle over all the states. The condition
of aperiodicity is needed to preclude such chains. As we will see, irreducibility and
aperiodicity together, allow us to prove convergence to stationary distributions over
time. We remark that although Definition 2 requires us to check that dx = 1 for every
x 2 X to deduce aperiodicity, it su�ces to only check this for one state. Indeed, it is
a simple exercise to prove that dx = dy for any two states x, y 2 X of an irreducible
MC (try it!).

We now state some well-known results about MCs. The proofs are omitted since
many readers are probably familiar with these results.

Theorem 1 (Properties of Markov Chains). Let W be the stochastic transition prob-

ability matrix of an MC. Then, the following are true:

1. There exists a stationary distribution ⇡ 2 P such that ⇡W = ⇡.

2. If W is irreducible, then the stationary distribution ⇡ is unique and entry-wise

strictly positive.

3. If W is irreducible and aperiodic, then there exists some n � 0 such that

W n(x, y) > 0 for all x, y 2 X (i.e. W n
is entry-wise strictly positive).

We remark that the first result is actually an immediate consequence of Brouwer’s
fixed-point theorem. It also admits a short proof using linear programming duality, but
a probabilistic proof requires some work. For those familiar with matrix theory, we
also remark that the third result simply says that irreducible and aperiodic stochastic
matrices are primitive matrices.

2 Total Variation Distance

In order to prove convergence to stationary distributions, we require a notion of
distance between distributions. The classical choice for this is the so called total
variation distance (which you were introduced to in the problem sets).

Definition 3 (Total Variation Distance). Given two distributions µ, ⌫ 2 P, we define

the total variation distance between them as:

kµ� ⌫kTV , max
A✓X

|µ(A)� ⌫(A)|

where µ(A) =
P

x2A µ(x) for any event A ✓ X.
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This definition perceives distributions (or probability measures) as maps from the
set of all events to [0, 1], and measures the maximum deviation between the two
distributions over all events. We will prove a few more equivalent characterizations
of total variation distance. To this end, we first introduce the notion of couplings.

2.1 Coupling

Coupling is a powerful proof technique in probability theory, and we will see some
uses of it in the ensuing sections. For now, we formally define it below.

Definition 4 (Coupling). Given two probability distributions µ, ⌫ 2 P, a coupling

between them corresponds to a pair of random variables (x , y) (defined on the same

probability space) with joint distribution px ,y on X ⇥ X whose marginal distributions

satisfy px = µ and py = ⌫.

There are several possible couplings between any two µ, ⌫ 2 P. For example, we
can always define the independent coupling where x and y are independent random
variables with px ,y (x, y) = µ(x)⌫(y) for every x, y 2 X. This is typically not a very
useful coupling. If µ = ⌫, then we can also define the “identical” coupling with x = y
and px = µ. As we will see next, a particular mixture of these two couplings is closely
related to the total variation distance.

2.2 Equivalent Characterizations of Total Variation Distance

The next result presents some equivalent characterizations of total variation distance.

Theorem 2 (Characterizations of Total Variation Distance). For any two probability

distributions µ, ⌫ 2 P, we have:

kµ� ⌫kTV =
X

x2X:µ(x)�⌫(x)

µ(x)� ⌫(x)

=
1

2
kµ� ⌫k1

= min {P (x 6= y) : (x , y) coupling of µ and ⌫}

where the first equality illustrates that the event S , {x 2 X : µ(x) � ⌫(x)} achieves

the maximum in the definition of total variation distance, the second equality is the

`1-norm characterization (recall that `1-norm is defined as kxk1 , Pn
i=1 |xi| for any

x 2 Rn
), and the final equality is the optimal coupling representation.

Proof. To prove the first characterization, let S , {x 2 X : µ(x) � ⌫(x)}. Then, for
any event A ✓ X, we have:

µ(A)� ⌫(A)  µ(S)� ⌫(S)
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because x 2 A\S ) µ(x)� ⌫(x) < 0 and x 2 S\A ) µ(x)� ⌫(x) � 0. Likewise, we
also get ⌫(A)� µ(A)  ⌫(Sc)� µ(Sc) = µ(S)� ⌫(S), which implies that:

|µ(A)� ⌫(A)|  µ(S)� ⌫(S) .

We can maximize over all A ✓ X on the left hand side and obtain kµ� ⌫kTV =
µ(S)� ⌫(S) (where equality is achieved by A = S). Since we have:

µ(S)� ⌫(S) =
X

x2X:µ(x)�⌫(x)

µ(x)� ⌫(x)

this proves the first characterization.
To prove the `1-norm characterization, notice that kµ� ⌫kTV = ⌫(Sc)� µ(Sc) =

µ(S)� ⌫(S) also gives us:

kµ� ⌫kTV =
1

2
(µ(S)� ⌫(S) + ⌫(Sc)� µ(Sc)) =

1

2

X

x2X

|µ(x)� ⌫(x)| = 1

2
kµ� ⌫k1 .

To prove the optimal coupling representation, observe that for any coupling (x , y)
of µ and ⌫ where µ = px and ⌫ = py , and any event A ✓ X, we have:

µ(A)� ⌫(A) = P (x 2 A)� P (y 2 A)

= P (x 2 A, y 2 A) + P (x 2 A, y /2 A)� P (y 2 A)

 P (x 2 A, y 2 A) + P (x 2 A, y /2 A)� P (x 2 A, y 2 A)

= P (x 2 A, y /2 A)

 P (x 6= y) .

Likewise, ⌫(A) � µ(A)  P (x 6= y), and hence, |µ(A) � ⌫(A)|  P (x 6= y), which
implies that:

kµ� ⌫kTV  min {P (x 6= y) : (x , y) coupling of µ and ⌫} .

So, it su�ces to construct a particular joint distribution px ,y that achieves equality
here by making x equal to y as much as possible. Let a ^ b , min{a, b} for any
a, b 2 R. Notice that:

kµ� ⌫kTV +
X

x2X

µ(x) ^ ⌫(x) =
X

x2S

µ(x)� ⌫(x) +
X

x2X

µ(x) ^ ⌫(x) =
X

x2X

µ(x) = 1

which means we can define � , 1 � kµ� ⌫kTV =
P

x2X µ(x) ^ ⌫(x). Furthermore,
define the probability distributions (check this!):

8x 2 X, p1(x) =
µ(x) ^ ⌫(x)

�
,

8x 2 X, p2(x) =
µ(x)� ⌫(x)

1� �
S(x) ,

8x 2 X, p3(x) =
⌫(x)� µ(x)

1� �
Sc(x) .
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Let Z be a Bernoulli random variable with P (Z = 1) = 1 � P (Z = 0) = �. Given
Z = 1, let (x , y) be coupled identically with conditional distribution:

8x, y 2 X, px ,y |z(x, y|1) = p1(x) x=y

so that x = y . Given Z = 0, let (x , y) be coupled independently with conditional
distribution:

8x, y 2 X, px ,y |z(x, y|0) = p2(x)p3(y)

where x 6= y as p2 and p3 have disjoint supports. It is straightforward to verify that
px = �p1 + (1 � �)p2 = µ and py = �p1 + (1 � �)p3 = ⌫, which means px ,y is a valid
coupling with P (x 6= y) = 1� � = kµ� ⌫kTV. This completes the proof.

In the first characterization, the event S has a useful interpretation in terms of
binary hypothesis testing as explored in the problem sets. Indeed, if µ and ⌫ are
likelihoods corresponding to two equiprobable hypotheses, then S is precisely the
decision region where the maximum likelihood (ML) decision rule chooses µ, and the
total probability of error Pe of the ML decision rule is given by:

Pe =
1

2
µ(Sc) +

1

2
⌫(S) =

1

2
(1� (µ(S)� ⌫(S))) =

1

2
(1� kµ� ⌫kTV) . (5)

The `1-norm characterization of total variation distance illustrates that it is a valid
distance (or metric) between distributions that is symmetric and satisfies the triangle
inequality. To interpret the third characterization, recall from subsection 2.1 that if
µ = ⌫, then we can define a coupling with x = y . The optimal coupling representation
portrays that the closest a coupling can get to having x identical to y is the coupling
corresponding to total variation distance. Furthermore, couplings that achieve total
variation distance and maximize P (x = y) are known as maximal couplings. Finally,
for those familiar with the Monge-Kantorovich problem from transportation theory,
we remark that the optimal coupling representation of total variation distance shows
that it is a Wasserstein distance of order 1 with respect to the Hamming metric.

3 Convergence and Ergodic Theorems

In this section, we present two fundamental results from the basic theory of MCs.
The first is an analog of the strong law of large numbers (SLLN) for irreducible MCs.

Theorem 3 (Ergodic Theorem). Given a function f : X ! R and an irreducible MC

{xn : n � 0} with stationary distribution ⇡ 2 P, for any initial distribution px0 2 P,
we have:

P
 

lim
n!1

1

n

n�1X

k=0

f(xk) = E⇡ [f(x)]

!
= 1

where E⇡ [f(x)] =
P

x2X ⇡(x)f(x).
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One way to prove this result is to segment the MC into blocks using carefully
chosen stopping times and then employing the SLLN. We omit this proof since we do
not assume a thorough understanding of such topics. However, it is worth mentioning
certain special cases of this result. If the irreducible MC is actually an i.i.d. process
(which means the stochastic transition probability matrix W has all rows equal to
⇡), then Theorem 3 reduces to the SLLN for the sequence of i.i.d. random variables
{f(xn) : n � 1}. If the function f(y) = y=x for some x 2 X, then Theorem 3 states
that:

P
 

lim
n!1

1

n

n�1X

k=0

xk=x = ⇡(x)

!
= 1 . (6)

This illustrates that an irreducible MC asymptotically spends roughly ⇡(x) fraction
of its time in state x 2 X.

Even when (6) holds, we may not have convergence to the stationary distribution
due to periodicity of the MC under consideration. So, we will present a second result
that guarantees convergence to stationary distributions for irreducible and aperiodic
MCs. Before stating the result, we formalize the “distance from stationarity” using
total variation distance. For an irreducible MC with stochastic transition probability
matrix W and stationary distribution ⇡ 2 P, we define:

8n � 0, d(n) , max
x2X

kW n(x, ·)� ⇡kTV = max
µ2P

kµW n � ⇡kTV (7)

which represents the “distance from stationarity” at time n. The maximum in the
rightmost extremal problem in (7) can indeed be achieved due to the extreme value
theorem. To prove the second equality in (7), notice that maxx2X kW n(x, ·)� ⇡kTV 
maxµ2P kµW n � ⇡kTV is clearly true, and:

max
µ2P

kµW n � ⇡kTV  max
µ2P

X

x2X

µ(x) kW n(x, ·)� ⇡kTV  max
x2X

kW n(x, ·)� ⇡kTV

where the first inequality follows from the triangle inequality. We also note that d(n)
is non-increasing in n (you can try to prove this by establishing a data processing

inequality for total variation distance). The next result presents the convergence
theorem for irreducible and aperiodic MCs.

Theorem 4 (Convergence Theorem). Given an irreducible and aperiodic MC with

stochastic transition probability matrix W and stationary distribution ⇡ 2 P, there
exist constants � 2 (0, 1) and C > 0 such that:

8n � 0, d(n)  C�n .

Proof. First observe from part 3 of Theorem 1 that since W is irreducible and aperi-
odic, there exists some m � 0 such that P = Wm is entry-wise strictly positive. This

7



means that there exists some � 2 (0, 1) such that P satisfies the Doeblin minorization

condition:
8x, y 2 X, P (x, y) � (1� �)⇡(y) .

Let 1 denote the |X| ⇥ 1 column vector with all entries equal to 1. Then, we can
decompose the MC P into a mixture of independent sampling from ⇡ and another
MC Q:

P = (1� �)1⇡ + �Q (8)

where 1⇡ is a unit rank stochastic matrix with all rows equal to ⇡, and Q , 1
� (P �

(1� �)1⇡) is a valid stochastic matrix due to the Doeblin minorization condition. We
claim that in fact:

8n � 1, P n = (1� �n)1⇡ + �nQn . (9)

For n = 1, this is simply (8). Suppose (9) holds for some n = k � 1: P k =
(1� �k)1⇡ + �kQk. Then, using this and (8) we have:

P k+1 = P kP = ((1� �k)1⇡ + �kQk)((1� �)1⇡ + �Q)

= (1� �)(1� �k)1⇡1⇡ + �(1� �k)1⇡Q+ (1� �)�kQk1⇡ + �k+1Qk+1

= ((1� �)(1� �k) + �(1� �k) + (1� �)�k)1⇡ + �k+1Qk+1

= (1� �k+1)1⇡ + �k+1Qk+1

where the third line holds because ⇡1 = 1 (⇡ is a distribution that sums to 1),
⇡Q = 1

� (⇡P � (1� �)⇡1⇡) = ⇡, and Qk1 = 1 (rows of a stochastic matrix sum to 1).
By induction, this implies that (9) is true for all n � 1.

Now observe from (9) that:

8n � 0, P n � 1⇡ = �n(Qn � 1⇡)

8n � 0, 0  r < m, Wmn+r � 1⇡ = �n(QnW r � 1⇡)

8n � 0, 0  r < m, max
x2X

��Wmn+r(x, ·)� ⇡
��
TV

= �n max
x2X

kQnW r(x, ·)� ⇡kTV

8k � 0, max
x2X

��W k(x, ·)� ⇡
��
TV

 �bk/mc

8k � 0, d(k)  1

�
(�1/m)k

where the second line follows from substituting P = Wm and then multiplying both
sides by W r, the third line follows from equating the `1-norms of the rows on both
sides and using the `1-norm characterization of total variation distance in Theorem
2, and the fourth line holds because total variation distance is always bounded by 1
and mn + r (for fixed m and varying n � 0, 0  r < m) runs over all k � 0. This
completes the proof.

We remark that another well-known method of proving this result uses coupling
ideas, but we omit this alternative proof for brevity. An immediate corollary of this
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result is that for an irreducible and aperiodic MC W :

8x, y 2 X, lim
n!1

W n(x, y) = ⇡(y) (10)

which conveys that the MC converges to its stationary distribution regardless of its
initial distribution. Moreover, the convergence theorem shows that irreducible and
aperiodic MCs converge exponentially fast to their stationary distributions. Unfor-
tunately, it does not provide explicit estimates of the constants C and �. So, it does
not directly address the question of how many time steps we need to wait in order
to guarantee we are close to the stationary distribution in total variation distance
(i.e. it does not give us explicit bounds on mixing times). It is worth mentioning
that for reversible MCs, the asymptotic rate of convergence to stationarity can be
easily shown (via the Perron-Frobenius theorem) to be the second largest eigenvalue

modulus (SLEM) of W . However, since C is still unknown and could be very large,
such SLEM estimates are still not very useful as we only run MCs for finitely many
time steps in practice. In the next section, we present a brief introduction to the use
of couplings to find explicit upper bounds on mixing times of MCs.

4 Upper Bounds on Mixing Times

We first define the notion of a mixing time, which formally captures the minimum
amount of time needed for the distance d(n) to be less than some prescribed constant.

Definition 5 (Mixing Time). Given an irreducible MC with stochastic transition

probability matrix W and stationary distribution ⇡ 2 P, we define the ✏-mixing time
of this MC for any ✏ 2 (0, 1) as:

tmix(✏) , min {n � 0 : d(n)  ✏} .

Furthermore, we refer to tmix , tmix(1/4) as the mixing time of the MC.

The ensuing subsections illustrate a simple technique to upper bound the mixing
times of irreducible and aperiodic MCs.

4.1 Markovian Coupling

The upper bounding technique relies on the idea of couplings. Recall that a coupling
of two distributions µ, ⌫ 2 P is a pair of jointly distributed random variables (x , y)
with joint distribution px ,y on X ⇥ X such that px = µ and py = ⌫. We now define
Markovian couplings, which are couplings between MCs.

Definition 6 (Markovian Coupling). Suppose {xn : n � 0} and {yn : n � 0} are two

MCs on the state space X with stochastic transition probability matrices W1 and W2,
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respectively. Then, a Markovian coupling of these MCs is the MC {zn = (xn, yn) :
n � 0} on the state space X ⇥ X with stochastic transition probability matrix P that

satisfies:

8x, x0, y 2 X,
X

y02X

P ((x, y), (x0, y0)) = W1(x, x
0) ,

8x, y, y0 2 X,
X

x02X

P ((x, y), (x0, y0)) = W2(y, y
0) .

Therefore, the Markovian coupling {zn = (xn, yn) : n � 0} is a “joint” MC whose
“marginals” are themselves the original MCs {xn : n � 0} and {yn : n � 0}. Note
that as before, there are two trivial Markovian coupling examples. If W1 = W2 and
px0 = py0 , then we can simply let xn = yn for all n � 0 to obtain the “identical”
Markovian coupling {zn : n � 0} with stochastic transition probability matrix:

8x, x0, y0 2 X, P ((x, x), (x0, y0)) = W1(x, x
0) x0=y0 (11)

and initial distribution: 8x, y 2 X, pz0(x, y) = px0(x) x=y. Alternatively, we can run
the MCs {xn : n � 0} and {yn : n � 0} independently and obtain the Markovian
coupling {zn : n � 0} with stochastic transition probability matrix:

8x, x0, y, y0 2 X, P ((x, y), (x0, y0)) = W1(x, x
0)W2(y, y

0) (12)

and initial distribution: 8x, y 2 X, pz0(x, y) = px0(x)py0(y).
When W = W1 = W2 (but px0 is not necessarily equal to py0), a particularly useful

fact is that any Markovian coupling can be modified so that the two “marginal” MCs
run together after the first time they meet. Formally, given a Markovian coupling
with initial distribution pz0 and stochastic transition probability matrix P , this mod-
ified Markovian coupling has the same initial distribution and stochastic transition
probability matrix Q given by:

Q((x, y), (x0, y0)) =

8
<

:

P ((x, y), (x0, y0)) , x 6= y
W (x, x0) , x = y and x0 = y0

0 , x = y and x0 6= y0
(13)

for every x, x0, y, y0 2 X. We use couplings of this kind in the next two subsections.

4.2 Upper Bounds via Coupling

We now prove an upper bound on the “distance from stationarity” d(n) using Marko-
vian couplings.

Theorem 5 (Coupling Upper Bound). Let {xn : n � 0} be an irreducible MC with

stochastic transition probability matrix W and stationary distribution ⇡ 2 P. For
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each pair of states x, y 2 X, suppose {(xn, yn) : n � 0} is a Markovian coupling of

{xn : n � 0} with itself, that has been modified to satisfy (13), and starts at the state

(x0, y0) = (x, y) 2 X ⇥ X (i.e. has initial distribution px0,y0(x, y) = 1). Let Px,y(·)
be the probability distribution of {(xn, yn) : n � 0} with (x0, y0) = (x, y), and define

tcoup , min{n � 0 : xn = yn} to be the first time the “marginal” MCs meet for this

Markovian coupling. Then, we have:

8n � 1, d(n)  max
x,y2X

Px,y(tcoup > n) .

Proof. First fix any two states x, y 2 X, and consider the Markovian coupling {(xn,
yn) : n � 0} that starts at (x0, y0) = (x, y) and runs the two “marginal” MCs together
for all n � tcoup. Since W n(x, x0) = Px,y(xn = x0) and W n(y, y0) = Px,y(yn = y0)
for every x0, y0 2 X and any fixed n � 1, we see that (xn, yn) is a coupling of the
distributions W n(x, ·) 2 P and W n(y, ·) 2 P. The optimal coupling characterization
of total variation distance in Theorem 2 allows us to upper bound the total variation
distance between W n(x, ·) and W n(y, ·):

kW n(x, ·)�W n(y, ·)kTV  Px,y(xn 6= yn) = Px,y(tcoup > n)

where the equality holds because our Markovian coupling runs the two “marginal”
MCs together after they meet. This implies that:

8n � 1, max
x,y2X

kW n(x, ·)�W n(y, ·)kTV  max
x,y2X

Px,y(tcoup > n) .

So, it su�ces to prove that:

8n � 0, d(n) = max
x2X

kW n(x, ·)� ⇡kTV  max
x,y2X

kW n(x, ·)�W n(y, ·)kTV .

This holds due to the following sequence of inequalities:

kW n(x, ·)� ⇡kTV , max
A✓X

|W n(x,A)� ⇡(A)|

= max
A✓X

�����
X

y2X

⇡(y)(W n(x,A)�W n(y, A))

�����

 max
A✓X

X

y2X

⇡(y)|W n(x,A)�W n(y, A)|


X

y2X

⇡(y)max
A✓X

|W n(x,A)�W n(y, A)|

=
X

y2X

⇡(y) kW n(x, ·)�W n(y, ·)kTV

 max
y2X

kW n(x, ·)�W n(y, ·)kTV
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where the second line holds because ⇡(A) =
P

y2X ⇡(y)W
n(y, A) (since ⇡ is the sta-

tionary distribution), the third line uses the triangle inequality, the fourth line holds
because the maximum of a sum is always upper bounded by the sum over the max-
imum, and the final line holds because a weighted average is always upper bounded
by the maximum element. Taking the maximum over all x 2 X in the final inequality
completes the proof.

This result can be used to find explicit upper bounds on mixing times of irreducible
and aperiodic MCs as the next example illustrates. We note that there are many other
techniques to upper bound mixing times, as well as to lower bound mixing times, but
a discussion of these techniques is beyond our scope.

4.3 Example: Lazy Random Walk on the k-Cycle

As an example, consider the random walk on the k-cycle for some k � 2. This is
an MC with state space X = Zk = {0, . . . , k � 1} (which is the finite additive cyclic
group of integers modulo k) and stochastic transition probability matrix given by:

8i, j 2 X, W (i, j) =

⇢
1
2 , j = i+ 1 (mod k) or j = i� 1 (mod k)
0 , otherwise

. (14)

Equivalently, we can think of the states as vertices of an undirected cycle graph Ck,
where at each time step, the MC randomly and uniformly chooses an adjacent vertex
and moves to it (i.e. at each step, it moves clockwise or anti-clockwise with probability
1
2 each). The random walk on the k-cycle is an irreducible MC that is aperiodic if k
is odd, and periodic with all states having period 2 if k is even (check this!).

One way to make this MC aperiodic for all k � 2 is to construct the lazy random

walk on the k-cycle. This MC has stochastic transition probability matrix given by:

8i, j 2 X, Wlazy(i, j) =

8
<

:

1
2 , j = i (mod k)
1
4 , j = i+ 1 (mod k) or j = i� 1 (mod k)
0 , otherwise

(15)

and is irreducible and aperiodic for all k � 2 (check this!). As before, we can perceive
this lazy random walk as an MC on the cycle graph Ck where at each time step, the
walk moves clockwise or anti-clockwise with probability 1

4 each, and does not move
at all with probability 1

2 .
We will upper bound the mixing time of the lazy random walk on the k-cycle. Let

{xn : n � 0} denote the MC corresponding to the lazy random walk. For any two
states x, y 2 X, let {(xn, yn) : n � 0} denote a Markovian coupling of {xn : n � 0}
with itself that starts at (x0, y0) = (x, y). This Markovian coupling is governed by
the following dynamics at each time step 0  n < tcoup (before the “marginal” MCs
meet):

• flip an unbiased coin (independent of all other coin tosses),

12



• if we get heads, then let yn+1 = yn and generate xn+1 from xn according to W
(i.e. move clockwise or anti-clockwise with probability 1

2 each),

• if we get tails, then let xn+1 = xn and generate yn+1 from yn according to W
(i.e. move clockwise or anti-clockwise with probability 1

2 each).

Furthermore, at each time step n � tcoup, xn = yn and transitions occur according
to Wlazy (i.e. after meeting, the “marginal” MCs run together). It is straightforward
to verify that this describes a valid Markovian coupling of {xn : n � 0} with itself
starting at (x0, y0) = (x, y) for every x, y 2 X. Using Theorem 5, we get that the
“distance from stationarity” of the lazy random walk on the k-cycle is upper bounded
by:

8n � 1, d(n)  max
x,y2X

Px,y(tcoup > n) 
max
x,y2X

Ex,y [tcoup]

n
(16)

where the second inequality follows from Markov’s inequality, and Ex,y [·] denotes the
expectation with respect to Px,y(·).

It is a classical exercise in probability theory when analyzing the gambler’s ruin

model to establish that Ex,y [tcoup] = b(x, y)(k � b(x, y)), where b(x, y) denotes the
“clockwise distance” between x and y. We omit a proof of this result for brevity, but
using it, we obtain the bound:

8n � 1, d(n) 
max
x,y2X

b(x, y)(k � b(x, y))

n
 k2

4n
(17)

where the second inequality holds because r(1 � r)  1
4 for all r 2 [0, 1]. For any

✏ 2 (0, 1), we can let k2

4n  ✏, and see that d(n)  ✏ if n � k2

4✏ . This produces the
following upper bound on the ✏-mixing time:

tmix(✏) 
k2

4✏
(18)

which we can specialize (by setting ✏ = 1
4) to get the following upper bound on the

mixing time:
tmix  k2 . (19)

We note that this result is tight in the sense that tmix � Ck2 for some constant C > 0,
which can also be proved using fairly simple techniques.

The upper bound in (18) guarantees that after k2

4✏ time steps, the distribution
over the states of the lazy random walk on the k-cycle is ✏-close to its stationary
distribution in total variation distance, regardless of the choice of initial distribution.
Hence, such upper bounds on ✏-mixing times indeed address our motivating question
from the introduction. Moreover, (18) conveys (as we would expect) that using smaller
✏ or larger k (state space size) increases the ✏-mixing time.
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